620-295 Real Analysis with Applications

Assignment 4: Due 5pm on 18 September

Lecturer: Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville VIC 3010 Australia
aram@unimelb.edu.au

Due 5pm on 18 September in the appropriate assignment box on the ground floor of Richard Berry.

1. Define the following and give an example for each:
(a) metric space,
(b) complete (for a metric space),
(c) completion (of a metric space),
2. Let X be a metric space and let $\left(a_{n}\right)$ be a sequence in X. Show that if $\left(a_{n}\right)$ converges then (a_{n}) is Cauchy.
3. Let $\left(a_{n}\right)$ be a sequence in $\mathbb{R}_{\geq 0}$. Show that if $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges then $\sum_{n=1}^{\infty} a_{n}$ converges.
4. Prove that $\lim _{x \rightarrow 0} \frac{\cos x-1}{x}=0$ and $\lim _{x \rightarrow 0} \frac{\cos x-1}{x^{2}}=-\frac{1}{2}$.
5. Define the following and give an example for each:
(a) metric space,
(b) limit of f as x approaches a,
(c) limit of $\left(x_{n}\right)$ as $n \rightarrow \infty$,
(j) continuous at $x=a$,
(c) continuous,
(d) uniformly continuous,
(e) Lipschitz,
(f) ε-ball,
6. Define the following and give an example for each:
(a) topology,
(b) topological space,
(c) open set,
(d) closed set,
(e) interior,
(f) closure,
(g) interior point,
(h) close point,
(i) neighborhood.
7. Let X and Y be metric spaces. Define the topology on X and Y. Define carefully what it means for $f: X \rightarrow Y$ to be continuous as a function between metric spaces and define carefully what it means for $f: X \rightarrow Y$ to be continuous as a function between topological spaces.
8. Let $a, b \in \mathbb{R}$ and let $f:[a, b] \rightarrow \mathbb{R}$ be a function. Let $c \in[a, b]$ and carefully define $f^{\prime}(c)$. Prove that if $f:[a, b] \rightarrow \mathbb{R}$ and $g:[a, b] \rightarrow \mathbb{R}$ are functions then $(f g)^{\prime}(c)=f(c) g^{\prime}(c)+f$ ${ }^{\prime}(c) g(c)$, whenever $f^{\prime}(c)$ and $g^{\prime}(c)$ exist.
